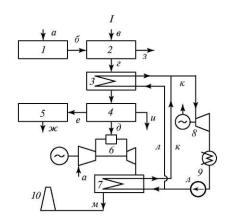
ОХРАНА ВОЗДУШНОГО БАССЕЙНА ОТ ВЫБРОСОВ ЭНЕРГОПРЕДПРИЯТИЙ

1.5. Технологии сжигания органических топлив на ТЭС со сниженным уровнем образования вредных выбросов в атмосферу

1.5.2. Газификация твердого топлива

1.5.2.1. Основы и технологии газификации


Котлер В.Р. и Рябов Г.А.; ОАО «ВТИ»

Газификация осуществляется путем химических превращений содержащегося в угле углерода и водяных паров при высоких температурах с образованием смеси горючих газов (СО, H_2 , CH_4). Необходимая для протекания реакций теплота выделяется за счет сжигания части угля (известны и исследованы также процессы с подводом теплоты извне). Содержащаяся в угле сера переходит в сероводород, который удаляется из генераторного газа с помощью промышленно освоенных и экономически эффективных процессов. В итоге газификации из угля получают чистый горючий газ и теплоту, которая может быть превращена в работу.

Принципиальные схемы ПГУ с газификацией угля показаны на рис. 1.62. Кислород или сжатый воздух и пар подаются в реактор (газогенератор, газификатор), в который поступает также предварительно подготовленный уголь. В газификаторе осуществляется частичное окисление угля с образованием горючего (генераторного,

синтетического) газа, содержащего в основном CO и $\rm H_2$, а также (в зависимости от технологии) $\rm N_2$, $\rm CO_2$ и $\rm H_2O$, и золы, которая выводится через шлюз. Генераторный газ очищается от остатков золы и соединений серы, после чего сжигается в камере сгорания ГТУ. Теплота отработавших в ГТУ газов, а также теплота, отводимая в процессах газификации и охлаждения генераторного газа, используется для выработки и перегрева пара, поступающего в паровую турбину и на газификацию.

Чистый генераторный газ, сжигаемый в камере сгорания ГТУ, создает благоприятные условия для работы проточной части газовой турбины: выбросы оксидов серы в атмосферу практически отсутствуют. Теплота сгорания генераторного газа достаточна для поддержания необходимой температуры газов перед турбиной, которая с развитием ГТУ может повышаться и доходить до предельных значений, соответствующих стехиометрическому сжиганию.

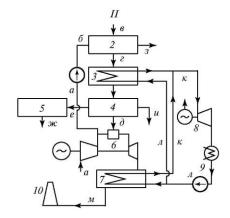


Рис. 1.62. Принципиальные схемы ПГУ:

I — кислородное дутье; II — воздушное дутье; основные элементы схемы: I — кислородная станция; 2 — газификация; 3 охлаждение сырого газа; 4 — очистка газа; 5 — выделение серы;

6 — ГТУ; 7 — котел-утилизатор; 8 — парогазовая турбина; 9 конденсатор; 10 — дымовая труба;

II — нагнетатель, повышающий давление воздуха; материальные потоки: a — воздух; δ кислород; ϵ — уголь;

e — сырой газ; d — очищенный газ; e — сорбент; m — сера; s — зола; u — пыль; κ — пар; n — вода; m уходя-

шие газы

Системы газификации угля и очистки генераторного газа усложняют схему электростанции и удорожают ее. Протекающие в них процессы связаны с потерями работоспособности и заметно снижают КПД ПГУ даже при практически полном преобразовании химической энергии угля в химическую энергию генераторного газа и теплоту и использования выделившейся теплоты с минимальными термодинамическими потерями.

Важными достоинствами наиболее совершенных систем газификации являются: способность перерабатывать разные угли с различными спекаемостью, зольностью, содержанием летучих и крупностью частиц; простота конструкции; большая производительность; высокая готовность к работе; способность быстро изменять нагруз-

ку; простота пуска и останова; отсутствие сточных вод и конденсирующихся углеводородов в генераторном газе.

Наиболее проработанными технологиями газификации угля являются: газификация в насыпном слое, в КС, в потоке (рис. 1.63). При газификации в насыпном слое уголь засыпается в аппарат, а окислитель — воздух или кислород — вместе с водяным паром поступает снизу и проходит через слой угля. Газификация происходит при противотоке угля и газов: температура газов к выходу из слоя снижается так, что в генераторном газе могут оставаться неразложившиеся конденсирующиеся углеводороды, смолы и масла. Газификатор с насыпным слоем требует применения угля определенной крупности, который не должен спекаться, чтобы обеспечить газопро-

ницаемость слоя. Поскольку при современных методах добычи в угле содержится до 50 % мелочи, а при транспортировке и перегрузке ее содержание еще увеличивается, для газификаторов этого типа требуется окомкование или брикетирование мелочи.

Газификация в КС должна происходить при температуре ниже температуры точки размягчения золы. Это требует увеличения времени пребывания частиц в зоне реакции и большего объема аппарата.

Реакционная способность угля и спекаемость золы являются наиболее важными характеристиками топлив, применяемых для газификаторов с КС. Они влияют на расход кислорода, преобразование углерода, рециркуляцию уноса и производительность. Высокую степень газификации при умеренной рабочей температуре легче всего получить, использовав высокореакционные угли. При регулировании нагрузки газификаторов с КС скорость дутья всегда должна быть больше минимальной скорости ожижения.

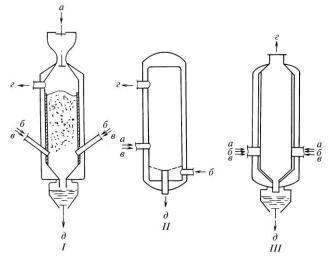


Рис. 1.63. Принципиальные схемы газификатора: I и II — насыпной и кипящий слой соответственно; III — газификация в потоке; a — уголь; δ — воздух либо кислород; ϵ — пар; ϵ — генераторный газ; δ — зола или жидкий шлак

При газификации угольной пыли в потоке окислителя нет особых требований к качеству угля. Она протекает при высоких температуре и тепловых нагрузках на стены рабочей камеры. В качестве окислителя обычно используется кислород, обеспечивающий при коротком времени пребывания угля в аппарате необходимую для полной газификации углерода температуру и достаточно высокую теплоту сгорания генераторного газа. Вследствие высокой температуры газа на выходе из газификатора он свободен от смол и других конденсирующихся соединений.

Газификация угля может осуществляться на воздушном или кислородном дутье. В технологическом отношении использование кислорода дает очевидные преимущества, так как позволяет интенсифицировать процессы, повысить степень преобразования углерода, получить среднекалорийный газ $(10...12~{\rm MДж/м^3})$, содержащий минимум балласта $(N_2, {\rm CO_2}, {\rm H_2O})$, и облегчить его последующую очистку. Вместе с тем наличие кислородной станции усложняет и удорожает систему газификации, а затраты на получение кислорода снижают КПД электростанции.

Сырой генераторный синтетический газ содержит вещества, способные загрязнять окружающую среду и нарушать нормальную работу газовой турбины, поэтому его необходимо тщательно очищать от пыли, соединений

серы (H_2S , COS, CS_2), азота (HCN, NH_3), щелочных металлов, хлора и фтора. Технология очистки оказывает значительное влияние на стоимость и тепловую эффективность электростанции.

Для реализации промышленно освоенных в настоящее время технологий очистки газа от сероводорода требуется его охлаждение до температуры около 40 °C. Процесс охлаждения связан с потерями давления и работоспособности; при использовании отводимой теплоты для выработки пара она преобразуется в работу с КПД парового цикла, а не всей комбинированной установки. Стоимость систем охлаждения и очистки генераторного газа составляет 15...20 % общей стоимости ТЭС.

По сделанным оценкам применение мокрой очистки газов снижает КПД ПГУ на 1 %.

Одной из причин снижения КПД при мокрой очистке генераторного газа является конденсация водяных паров (значительное количество которых находится в сыром газе) при температурах ниже 200 °C и связанные с нею потери тепла и работоспособности, а также поглощение из него не только H_2S , но и CO_2 и уменьшение вследствие этого массового расхода через газовую турбину.

Охлаждение генераторного газа с 1400 до 800 °C путем рециркуляции охлажденного газа приводит к уменьшению КПД ПГУ примерно на 1 %.

Активно разрабатываются высокотемпературные технологии очистки генераторного газа, которые позволят сократить стоимость и упростить эксплуатацию систем, а также снизить связанные с очисткой потери. Считается возможным в газификаторах с КС, добавляя в слой сорбент, связывать в процессе газификации свыше 90 % серы угля, а также улавливать при температурах 540...600 °С частицы пыли и соединения щелочных металлов в одном устройстве. При необходимости возможны дополнительная очистка генераторного газа от серы и подача его в ГТУ при таких же температурах, а в перспективе, после улучшения материалов трубопроводов, при температурах 650...760 °C. Влияние температуры, при которой проводится сухая очистка, на КПД ПГУ невелико; при повышении температуры с 250...300 до 900...1100 °С КПД ПГУ увеличивается на 0,3...0,4 %.

Характерные особенности трех основных методов газификации угля приведены в табл. 1.30.

Хотя принципиально все марки углей — от лигнитов до антрацитов — могут быть газифицированы, имеющийся в настоящее время промышленный опыт относится в основном к каменным углям. Показатели, которые могут быть достигнуты в различных системах газификации при использовании каменных и бурых углей, приведены в табл.1.31.

Независимо от технологии газификации в горючий газ и теплоту переходит примерно одинаковая — от 94,4 до 95,8 % — часть энергии (высшей теплоты сгорания) угля (табл. 1.31). Повышение температуры процесса при газификации в потоке увеличивает удельную нагрузку сечения газификатора и уменьшает содержание углеводородов в сыром газе, что упрощает его очистку. Вместе с тем для повышения температуры необходимо полностью окислять (сжигать) большую часть поступающего в газогенератор угля; вследствие этого доля его химической энергии, преобразующаяся в горючий газ, снижается, а выделяющаяся в виде теплоты, растет. Наибольшая степень преобразования химической энергии угля в теплоту сгорания генераторного газа достигается в газификаторе с насыпным слоем и низкой температурой газа на

выходе. Таким образом, для каждой технологии газификации характерна своя степень использования топлива в

комбинированном цикле, которая влияет на структуру и показатели $\Pi\Gamma Y$.

Таблица 1.30. Характерные особенности процессов газификации угля

	Тип газификатора									
	С неподвижным слоем		С кипящ	им слоем	С пылеугольным потоком					
Характеристика		Фирма-разработчик								
	«Лурги»	«Бритиш Газ- Лурги» (БГЛ)	«Реин-браун»	КРВ	«Тексако», «Дестек»	«Шелл»				
Состояние удаляемой золы	Сухая	Жидкая	Сухая	Агломериро- ванная	Жидкая	Жидкая				
Состояние загружаемого угля	Кусн	совой	Дроб	ленка	ВУС*	Пыль				
Потребность в кислороде	Небольшая		Отсутствует л	ибо умеренная	Высокая					
Температура газа на выходе, °С	430 540		870	980	12601480					
Особенности процесса	В генераторно жатся жидкие смолы, масла		Требуется рещ уноса из-за вы жания в нем го	сокого содер-	Большое количество химической энергии угля переходит в теплоту					

^{*} ВУС — водоугольная суспензия.

Таблица 1.31. Показатели различных систем газификации угля

	Технология газификации и фирмы-разработчики									
Показатель	В потоке		С кипящим слоем		С насыпным слоем	В потоке	С кипящим слоем			
	«Тексако»	«Шелл»	«Вестингауз» (КРВ)		БГЛ	«Шелл»	«Вестингауз» (КРВ)			
Вид угля			ный, иллиной		Лигнит					
Вид дутья		Кислород Воздух			Кислород	Кислород				
Температура сырого газа, °С	1260 1480	14001530	870 980	870 980	430 540	14001530	950			
Давление в газификаторе, МПа	4,2	2,8	3,1	2,3	2,3	2,7	3,1			
Типичный состав генераторного газа % (по объему):										
CH ₄	0,07	0,04	7,45	2,77	6,27*	_	6,51			
H_2	37,65	30,93	34,1	15,85	31,5	28,46	28,16			
CO	49,08	62,82	45,4	27,89	57,2	60,50	47,80			
CO_2	11,13	1,5	11,42	3,27	2,20	5,37	15,70			
инертные	2,04	4,91	1,62	50	2,27	5,67	1,83			
Высшая теплота сгорания, $\kappa Д ж/м^3$	10 434	11 180	12 297	6148	14 346	10 806	11 551			
Выход газа, ${\rm M}^3/{\rm K}\Gamma$ угля	2,1	2,08	1,97	4,11	2,00	1,77	1,65			
Расход кислорода, кг/кг угля	0,86	0,6	0,61	0,68	0,53	0,73	0,62			
Расход пара, кг/кг угля	_	0,029	0,0647	0,261	0,328	_	0,24			
Расход воды, кг/кг угля	0,5	0,063	0,053	0,064	0,053	0,10	0,18			
Степень конверсии углерода, %	99	99	95	92	99	99	97,5			
Используемая доля теплоты сгорания угля, %:										
химическая энергия газа	75,93	79,58	80,84	79,01	89,36	78,06	78,76			
физическое тепло газа	18,45	14,94	13,73	15,4	5,70	16,71	17,0			
всего	94,38	94,53	94,57	94,41	95,05	94,77	95,76			

^{*} Кроме СН₄ в газе содержится $0.53 \% C_n H_m$