424	4.2.						
4.2.1.	, « , «	»;·	»; ., ()				
	(). 4.2.1.					
	,			-			
, SO ₃ [1—3].	,			-			
[4]		- :		- · -			
[4].	, SO_3 .	,	SO_2	- - -			
. [4].	(6) 90 %	- 0,510 / ³ , - 0,56 ; 900	:	SO ₂			
2 / SO ₃ -	. (900) SO ₂ 0,030 / ³	SO ₃ 0,013 / ³ .				
, SO_3	SO_2 .	« —	: « ».	» -			
90-	,	SO $_3$ $ \frac{c_{\mathrm{SO}}}{}$	$: \\ -c_{SO_2} + c_{SO_3}$	(4.1)			
	SO ₃ - « ».	- -	$\frac{c_{SO_2} + c_{SO_3}}{c_{SO_2}}$,	(4.1)			
	,		, %,	-			
3040 %.		O ₃	=100.	(4.2)			
()				-			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- ()	. —	,	:	
. , , , , ,		·	,			
,	, -		·	3.		. 4.7
« 8 20-	- »	<u>-</u>	,			
1998 .		,			•	,
, LUK 12-	-	,			(
. 4.8.			,			,
Электрофильтр Стационарив пылемер Дымосос Зола+ SO_3+H_2O (пары) Пульпа с оксидами серы]	10 %. 32 %; — 0,51, 1,51,	,0 / ³ 8 / ³	:	;	_
. 4.8.	-	•	-	p -).);
•	-				<i>,</i> •	
. ()	-	•	,		· :	10 %
0,50,7 . 2 / 3,	- - -	•	0,2 /;			
	-	50	0 %			3 /

IAS. 1986. Vol. 22. 3. . 516—522.

4. **Mizuno A., Clements I.S., Davis R.H.** A Method for the Removal of Sulfur Dioxide from Exhaust Gas Utilising Dulsed Streamer Corona for Electron Energization // IEEE Trans. on

«Research-Cottrell» — EPRICON, 1997.