AIR POOL PROTECTION FROM EMISSIONS OF THE POWER INDUSTRY

1.1. Reducing nitrogen oxides emissions

1.1.2. Technological methods to reduce nitrogen oxide formation in the boilers during combustion of different types of organic fuel

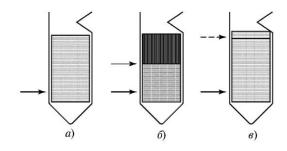
1.1.2.2. Modernization of the furnace process

1.1.2.2.3. Over fire air (two-stage combustion)

Kotler V.R., the Open JSC «VTI»

The method of Over fire air is called two-stage combustion, because in the furnace are organized two combustion zones: the first – at filing through the burner of all the fuel with oxygen deficiency ($\alpha < 1$), and the second zone, at which served the rest of the air required for post-combustion products of incomplete combustion from the first zone.

Даже в тех случаях, когда дополнительный воздух вводится на двух или трех уровнях по высоте топки, такой метод следует называть двухступенчатым сжиганием. Его эффективность определяется наличием зон с восстановительной средой (до ввода дополнительного количества воздуха), степенью недостатка воздуха в этой зоне и временем пребывания продуктов горения в этой же зоне (т.е. продолжительностью восстановительных реакций).


Впервые целенаправленная реконструкция энергетического котла для снижения выбросов оксидов азота за счет двухступенчатого сжигания была осуществлена на котле БКЗ-210-140Ф Западно-Сибирской ТЭС (1981 г.). До реконструкции котла концентрация NO_x в дымовых газах при номинальной нагрузке и проектном избытке воздуха превышала 900 мг/м^3 . Измерения, проведенные после реконструкции котла, показали, что подача 16...18% воздуха через сопла третичного дутья позволяет снизить концентрацию NO_x до $500...590 \text{ мг/м}^3$ [11]. С тех пор метод двухступенчатого сжигания был реализован не только на десятках действующих газомазутных и пылеугольных котлов, но и в заводских условиях при изготовлении новых установок.

При реконструкции действующих котлов внедрение метода двухступенчатого сжигания не требует больших затрат. Предварительная подготовка воздушных коробов с шиберами и гибов экранных труб для монтажа сопл третичного воздуха позволяет сравнительно быстро выполнить необходимый объем реконструктивных работ. На упомянутом выше котле БКЗ-210-140Ф реконструкция топки была выполнена в течение двух недель во время планового текущего ремонта котла.

Для успешного решения поставленной задачи внедрение двухступенчатого сжигания должно быть выполнено с соблюдением главных требований: количество третичного воздуха, место ввода струй третичного воздуха и интенсивность перемешивания этих струй с продуктами сгорания из основной зоны, содержащими горючие вещества, должны быть адекватны поставленной задаче. Известны случаи, когда на газомазутных котлах переход к двухступенчатой схеме сжигания создавал проблемы с перегревом пара (или с температурой промперегрева). На пылеугольных котлах двухступенчатое

сжигание может повысить интенсивность шлакования топочных экранов или существенно ускорить процесс высокотемпературной коррозии. Последнее явление особенно опасно при сжигании серосодержащих топлив в котлах СКД, у которых температура экранных труб выше, чем в котлах докритического давления. При сжигании углей с малым выходом летучих переход к двухступенчатому сжиганию существенно повышает содержание горючих в уносе.

Модификацией схемы двухступенчатого сжигания является схема бустерного двухступенчатого сжигания (ВОFА). Последняя предполагает наличие специального (бустерного) вентилятора для повышения давления третичного воздуха. Интенсивное перемешивание струй третичного воздуха с продуктами сгорания позволяет

 \longrightarrow — основные горелки; \longrightarrow — сопла третичного воздуха; \longrightarrow — сопла третичного воздуха с повышенной турбулентностью

Рис. 1.17. Схемы организации двухступенчатого сжигания: a — одноступенчатое сжигание; δ — двухступенчатое сжигание (OFA); ϵ — двухступенчатое усиленное сжигание (BOFA)

дожечь СО и коксовые остатки до выхода дымовых газов из топки даже в тех случаях, когда сопла третичного воздуха располагаются в верхней части топочной камеры (рис. 1.17).

Метод бустерного двухступенчатого сжигания был внедрен в Португалии, на котле блока мощностью 314 МВт ТЭС Sines (16,2 МПа, 535/535 °C). При работе котлов на высококачественном каменном угле с отключенной схемой двухступенчатого сжигания концентрация NO_x составляла 780 мг/м³, а содержание горючих в уносе — 4,5 %. Внедрение обычной схемы двухступенчатого сжигания снизило концентрацию NO_x до 480 мг/м³, но содержание горючих в уносе (в зависимости от состава угольной смеси) повысилось до 7...12 %. И только внедрение бустерного двухступенчатого сжигания позволило получить результаты, устраивающие владельцев ТЭС: концентрацию оксидов азота 466 мг/м³, содержание горючих в уносе 5,45 %.